

# Mixture of Ordered Scoring Experts for Cross-prompt Essay Trait Scoring

Po-Kai Chen<sup>3</sup>, Bo-Wei Tsai<sup>3</sup>, Kuan-Wei Shao<sup>1</sup>, Chien-Yao Wang<sup>2</sup>, Jia-Ching Wang<sup>3</sup>, and Yi-Ting Huang<sup>1\*</sup>



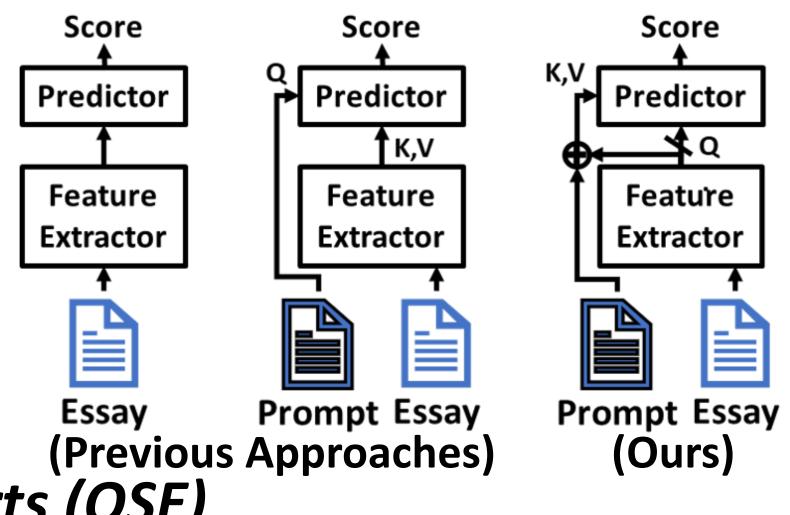


国立中央大學

<sup>1</sup>National Taiwan University of Science and Technology, <sup>2</sup>Institute of Information Science, Academia Sinica, <sup>3</sup>National Central University

## Abstract

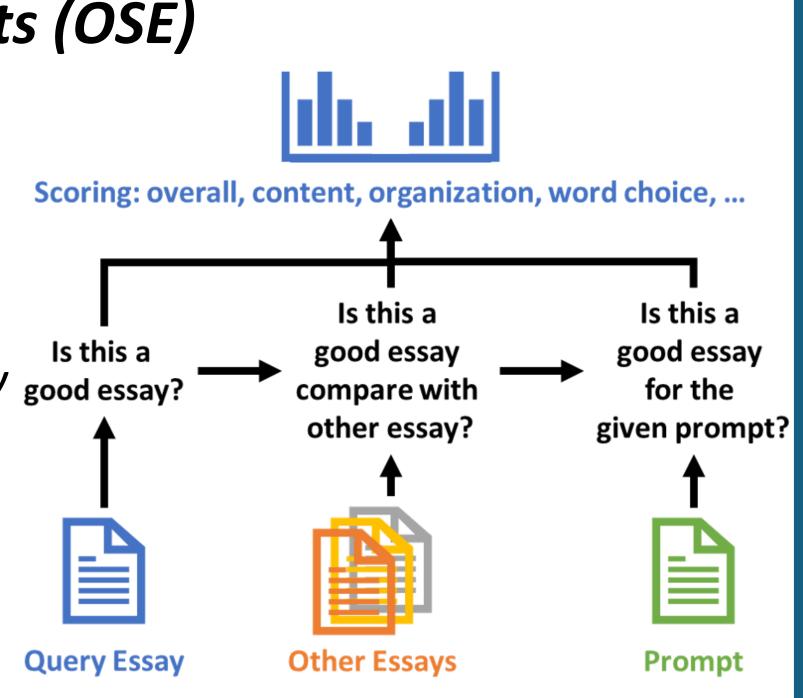
We propose the Mixture of Ordered Scoring Experts (MOOSE), a framework for essay trait scoring. It imitates the scoring process of professional human raters by integrating three specialized experts to evaluate: (1) the overall quality of an essay, (2) its relative quality compared to other essays, and (3) its relevance to the given prompt. Furthermore, by reformulating essay trait scoring as a scoring cue retrieval problem and using the essay as the query, MOOSE achieves state-of-the-art performance in cross-prompt essay trait scoring on the ASAP++ dataset. It offers stable and trait-consistent results, surpassing previous models including LLM-based methods.


# Methodology

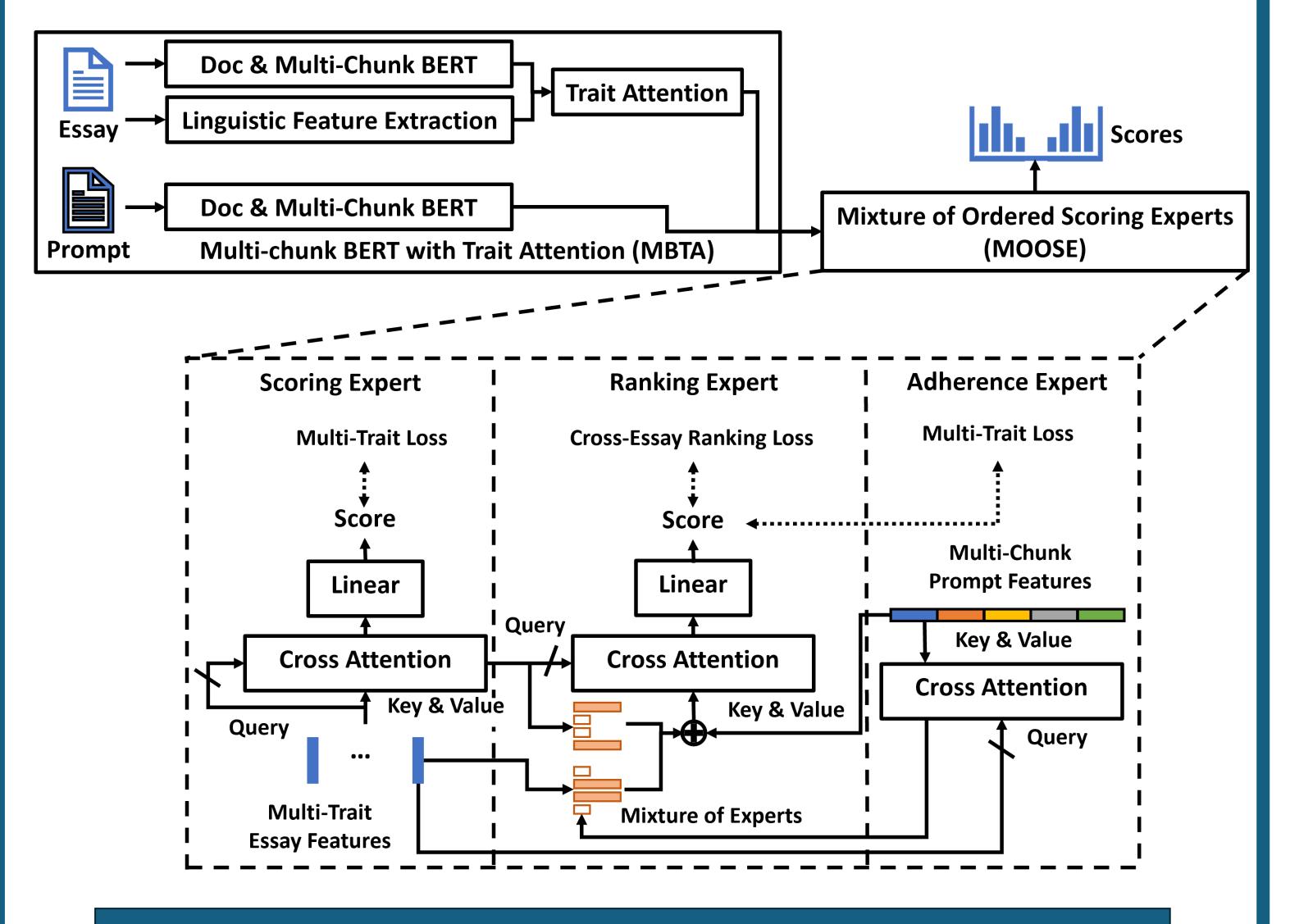
#### Feature Extraction

- Capturing hierarchical features of essay and prompt by Multi-Chunk BERT [1] and Trait Attention [2].
- Extract 86 linguistic features (POS, readability, syntax, ...).

## Essay as Query


- Prevents overfitting to seen prompts.
- Enables generalized scoring cue retrieval.




# Ordered Scoring Experts (OSE)

**Scoring Expert:** Learn essay inherent scoring cues.

- Ranking Expert: Compare relative quality good essay? across different essays.
- **Adherence Expert:** Estimate the degree of prompt adherence.



### Mixture of Ordered Scoring Experts (MOOSE)



## Performance

Cross-Prompt QWK (Avg. over 8 prompts)

Multi-Trait QWK (Avg. over 9 traits)

| Model                 | QWK   | STD   | Model                 | QWK   | STD   |
|-----------------------|-------|-------|-----------------------|-------|-------|
| RDCTS [3]             | 0.570 | 0.085 | RDCTS [3]             | 0.568 | 0.065 |
| ProTACT [2]           | 0.592 | 0.067 | ProTACT [2]           | 0.586 | 0.058 |
| EPCTS [4] (LLM-based) | 0.632 | 0.038 | EPCTS [4] (LLM-based) | 0.623 | 0.035 |
| OSE (Ours)            | 0.638 | 0.037 | OSE (Ours)            | 0.634 | 0.023 |
| MOOSE (Ours)          | 0.642 | 0.036 | MOOSE (Ours)          | 0.641 | 0.018 |

### *Improvements*

- Outperforms all SoTAs on cross-prompt essay trait scoring.
- Achieves exceptionally stable performance across different prompts and traits.
- Makes the prediction of the model be interpretable.

#### Cross-Prompt QWK of Different Query Type

| Model           | QWK   | STD   |
|-----------------|-------|-------|
| Prompt as query | 0.591 | 0.091 |
| Essay as query  | 0.624 | 0.057 |

#### Cross-Prompt QWK of Different Learning Goal

| Model                             | QWK   | STD   |
|-----------------------------------|-------|-------|
| Learning to scoring               | 0.589 | 0.058 |
| Learning to retrieve scoring cues | 0.596 | 0.056 |

#### Cross-Prompt QWK of Different Scoring Experts

| Model           | QWK   | STD   |
|-----------------|-------|-------|
| Scoring experts | 0.597 | 0.059 |
| Ranking experts | 0.607 | 0.054 |
| Ordered experts | 0.624 | 0.058 |

#### Insights

- Using essay as query strongly improves the performance via estimating distribution of essay over prompt & essay.
- Reformulating learning goal to scoring cue retrieval makes the model more robust on the unseen prompt.
- By imitating scoring process of human raters, ordered experts get outstanding performance on essay scoring.

## Reference

- [1] Yongjie Wang et al. "On the use of BERT for automated essay scoring: Joint learning of multi-scale essay representation." NAACL, 2022.
- [2] Heejin Do et al. "Prompt- and trait relation-aware cross-prompt essay trait scoring." ACL Findings, 2023.
- [3] Jingbo Sun et al. "Enhanced cross-prompt trait scoring via syntactic feature fusion and contrastive learning." The Journal of Supercomputing, 2024.
- [4] Jiangsong Xu et al. "EPCTS: Enhanced prompt-aware cross-prompt essay trait scoring." Neurocomputing, 2025.

## Code & Demo



The code and the demo of the paper are publicly available at https://antslabtw.github.io/MOOSE

