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介紹

自駕感知易受對抗攻擊影響而誤判，本研究針對真實交通號誌在
對抗攻擊下的安全風險，先以淨化修正影像，使模型能正確辨識，
以確保自駕車安全。
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動機與問題

• 既有擴散淨化步數多、延遲高，難以接近即時。

• 能否在較少步數下，保留關鍵特徵同時去除擾動？

• 自駕感知易受對抗攻擊(PGD ℓ∞/ℓ2、
StAdv)。
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研究聚焦在在較少步數、較低延遲條件下，檢驗擴散式淨化
是否能兼顧關鍵特徵與去擾動效果。



研究貢獻

• 結合 GDMP 與 DPM-Solver++之加速採樣框架。

• 在 GTSRB[10]上系統性評估 Standard/Robust 指標，
並與傳統前處理對比，同時量測Purification latency。
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•  平均淨化延遲可控制在秒級 (約 5.9 秒)。



背景 : 對抗攻擊

• PGD(ℓ∞)[13] : 採多步迭代梯度攻擊，限制單一像素的最大改
變量，產生人眼難以察覺的細微雜訊。

• PGD(ℓ2)[13] : 採多步迭代梯度攻擊，限制整張影像的總擾動
能量(歐氏距離)，控制整體的變異程度。

• FGSM[11] : 利用梯度的符號方向進行單步攻擊，計算極快但
攻擊力較弱，是早期最具代表性的基礎攻擊方法。
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像素級擾動 (Pixel-level Noise)

空間形變 (Spatial Deformation)

• StAdv[20](幾何位移): 透過最佳化流場產生幾何形變與像素位
移，破壞影像結構語義而非直接修改像素數值。
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• 擴散淨化：前向加噪稀釋對抗擾動，反向去噪恢復影像的關鍵特徵。

1. DiffPure[15] : 把對抗樣本送到較高噪聲層後再進行反向採樣。
2. IDC[8] : 把分類轉成「影像→標籤模板影像」的擴散生成，再用相

似度評分決定類別。
3. DDIM[18] : 以非馬可夫、確定性路徑加速反向採樣，能用遠少於 

DDPM 的步數達到可接受品質。
4. DPM- Solver++[13] : 把反向擴散視作 ODE，利用高階多步展開結

合前幾步的模型輸出做二/三階修正。
5. GDMP[19] :  在 反 向 去 噪 期 間 加 入 「 條 件 式 距 離 引 導 」 ( 如 

MSE/SSIM)。

• 挑戰：少步數下的誤差累積與關鍵特徵保持。

背景 : 擴散模型
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方法總覽
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實作設定

• Dataset：GTSRB

• Detection model : ResNet-50

• 攻擊參數：PGD(ℓ∞ : ε=8/255、ℓ2 : ε=1.0)、StAdv ε=0.05

• 淨化參數 : 淨化步數設為 24、目標時間 t*=0.6、引導係數為 1.5
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• 評估：Standard / Robust accuracy、延遲觀測



實驗結果

Method Standard Acc. (%)

Robustness Acc. (%) 

𝓁∞ 𝓁2 StAdv

無防禦 93.81 0.47 31.29 0.43

JPEG 
Compression[12]

66.43 20.97 71.62 5.79

Feature 
Squeezing[13]

75.38 28.38 56.19 10.32

Median 
smoothing[13]

65.36 4.48 58.60 1.47

ours 68.76 19.50 19.50 13.00
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表1 : 對抗強自適應攻擊的標準準確率和穩健準確率



淨化範例(對比圖：x_adv / 淨化後)
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Attack PSNR SSIM LPIPS

PGD-𝓁∞ 10.7345 0.4366 0.7132

PGD-𝓁2 10.7005 0.5411 0.5598

StAdv 10.1532 0.3506 0.7467

Attack Latency (ms)

PGD-𝓁∞ 5987.808

PGD-𝓁2 5963.320

StAdv 5900.977

表3 : Purification Latency ， Latency(ms)為淨化的延遲

表2 : Image Quality Metrics: 𝑰𝑸(𝒙, 𝒙𝒐𝒖𝒓)， 𝒙表示對抗樣

本，𝒙𝒐𝒖𝒓表示經我們的淨化方法後的影像

影像品質與淨化延遲



結論

• 以 DPM-Solver++ 加速 GDMP 淨化 。

• 實驗證實結合 DPM-Solver++ 後，平均淨化延遲可控制在 
秒級 (約 5.9 秒)，為未來實現自駕車即時防禦奠定了基礎 。
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未來工作

• 更完整的評估(擴充到 adaptive-attack、更多的資料集評估) 。

• 衡量引導權重 𝑠 與目標步數𝑡*之權衡，使準確率近一步的提高。 
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Thanks for listening.
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Q & A
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Method 
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JPEG 
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