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Challenge - Introduction

• Challenge 1: High Annotation Cost

• Semantic segmentation relies heavily on large-scale, pixel-level 
labeled data.

• Mitigation: Using existing heterogeneous datasets.

• Challenge 2: Heterogeneous Label Spaces 
• Root Cause: Inconsistent class taxonomies and varying levels of 

granularity.
• Our Solution: Proposing the Integrated Pseudo-Labeling (IPL) 

Pipeline.
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Main Contribution - Introduction

• New Framework: Proposed a new, effective framework for 

automating pixel-level labeling and addressing data scarcity with 

minimal manual effort.

• Intelligent Aggregation: Designed a new weighted voting 

mechanism that leverages both class-specific expertise and 

general model reliability.

• Preservation Strategy: Introduced a rule-based integration 

strategy that preserves the quality of original ground-truth labels.
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Related Work

• Pseudo-Labeling 

• Focuses on adaptation within a unified label taxonomy.[7]

• Traditional Ensemble Methods 

• Relies on simple majority voting; fails to capture models’ 

specific class expertise. [4]

• Multi-Dataset Learning 

• A central challenge in this area is resolving conflicts in 

datasets with heterogeneous label spaces. (e.g., Cityscapes: 

person; nuImages: adult, child, …) [3][2]
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Related Work

• Label Harmonization Framework 

• Explicitly resolves heterogeneous label conflicts across 

multiple datasets.

• Performance-Aware Weighted Voting

• Intelligently balances "Specific Confidence" with "General 

Reliability".

• Model-Agnostic Post-Processing

• High efficiency and low cost, integrating predictions directly 

via rule-based policies.

9



Background

10



Datasets - Background

• Datasets Utilized

• We involve mainstream semantic segmentation datasets, 

notably nuImages and BDD100K. [10]

• Key Relationship

• Datasets like Cityscapes, KITTI, and BDD100K share a 

common set of 19 evaluation classes. [3][5][10]

• 𝑅𝑚𝑎𝑛𝑢𝑎𝑙 (Class Mapping Rules)

• We define these rules to formalize the parent-child and 

conceptual overlap relationships. 
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Datasets - Background
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Foundation Models - Background 

13

• OpenSeed

• It offers strong generalization for open-vocabulary tasks.

• It is suitable for multi-dataset integration.

• EOV-Seg

• It provides high efficiency with reduced computational cost.

• It is ideal for fast, high-quality pseudo-label generation in 

constrained-category settings
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Pre-computation - Implementation
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Pre-computation of Model Performance Scores

• Goal: 

• Establish a Performance-Aware weighting basis for the 

subsequent voting scheme.

• Class Variance: 

• A single model exhibits varying performance across different 

semantic classes (e.g., better at detecting car than tree).

• Dataset Variance: 

• The same class may different reliability scores when predicted 

by models trained on heterogeneous datasets.
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Weighted Voting and Pseudo-Label Generation

W𝑀𝑜𝑑𝑒𝑙,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 = 𝐹1𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 + 𝐹1𝑎𝑣𝑔

𝐹1𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

Define: The F1-score of the 

specific class currently being voted 

on in another dataset.

Function: Rewards the model for 

its domain expertise.

𝐹1𝑎𝑣𝑔

Define: The average F1-score of 

the shared class in this dataset.

Function: Ensures stable baseline 

quality.

Synergistic Balance: This way synergistically balances the model's overall 

stability with its specific competence, resulting in higher quality pseudo-labels .
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Pseudo-Label and Ground-Truth Label Integration

Pseudo-Label

Use Ground Truth.

If 𝐿𝐺𝑇 is 

background and 

𝐿𝑝𝑠𝑒𝑢𝑑𝑜 is a valid 

class.

If 𝐿𝑝𝑠𝑒𝑢𝑑𝑜is a 

sub-class of 𝐿𝐺𝑇 .

Uses Pseudo-Labels. Uses Pseudo-Labels. 

NO

NO YESYES

To expand and fill in missing 

annotations in the original data.
Ensures the integrity of the original 

high-quality labels is maintained.

Uses pre-defined 𝑅𝑚𝑎𝑛𝑢𝑎𝑙 to retain

finer granularity in the final label map. 
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Experimental Methodology

• Goal: Complement the categories of nuImages to align them with 

other mainstream datasets.

• Assume that the nuImages dataset lacks annotations for the three 

categories, "bicycle," "car," and "bus".

• Use our algorithm to generate pseudo-labels for these missing 

categories.
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Experimental Results
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Ablation Study - Two Step 

To further dissect the effectiveness of our proposed IPL pipeline, we 

conduct an ablation study to analyze the individual contributions of 

our two core components: 

1. The weighted voting scheme.

2. The ground-truth (GT) integration policy.
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Ablation Study - Metric 

To validate the selection of the core metric (F1-score, Precision, or 

Recall) for our performance-aware weighted voting scheme.

The F1-score-based Weight consistently yields superior performance 

across all categories, achieving the highest Average IoU (0.8047).
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Ablation Study - Metric 

To validate the selection of the core metric (𝐹1𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 + 𝐹1𝑎𝑣𝑔 ,

𝐹1𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑛𝑙𝑦, 𝑜𝑟 𝐹1𝑎𝑣𝑔 𝑜𝑛𝑙𝑦) for our performance-aware 

weighted voting scheme.

The 𝐹1𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 + 𝐹1𝑎𝑣𝑔 Weight consistently yields superior 

performance across all categories, achieving the highest Average IoU

(0.8047).
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Core Conclusion

• Successfully Addressed Label Inconsistency: Introduced the 

IPL pipeline, resolving the critical challenge of harmonizing 

heterogeneous semantic segmentation datasets.

• Automated High-Quality Pseudo-Labeling: Achieved 

significantly higher quality pseudo-labels than individual models.

• Validated Components: Ablation studies confirmed that both 

Weighted Voting and Rule-Based Integration are crucial for 

superior performance.
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Main Contribution

• New Framework: Proposed a new, effective framework for 

automating pixel-level labeling and addressing data scarcity with 

minimal manual effort.

• Intelligent Aggregation: Designed a new weighted voting 

mechanism that leverages both class-specific expertise and 

general model reliability.

• Preservation Strategy: Introduced a rule-based integration 

strategy that preserves the quality of original ground-truth labels.
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Future Work

• Adaptive Rule Derivation: Explore using Large Language 

Models (LLMs) to automatically construct semantic hierarchies 

between class labels .

• Task Extension: Extend the IPL framework to other dense 

prediction tasks, such as Instance Segmentation or Depth 

Estimation, to validate its versatility.
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Pseudo-Label and Ground-Truth Label Integration

Pseudo-Label

Use Ground Truth.

If 𝐿𝐺𝑇 is 

background and 

𝐿𝑝𝑠𝑒𝑢𝑑𝑜 is a valid 

class.

If 𝐿𝑝𝑠𝑒𝑢𝑑𝑜is a 

sub-class of 𝐿𝐺𝑇 .

Uses Pseudo-Labels. Uses Pseudo-Labels. 

NO

NO YESYES

To expand and fill in missing 

annotations in the original data.
Ensures the integrity of the original 

high-quality labels is maintained.

Uses pre-defined 𝑅𝑚𝑎𝑛𝑢𝑎𝑙 to retain

finer granularity in the final label map. 
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Pre-computation - Implementation
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