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Abstract. Malware detection has noticeably increased in computer security
community. However, little is known about a malware’s intentions. In this
study, we propose a novel idea to adopt sequence-to-sequence (seq2seq) neural
network architecture to analyze a sequence of Windows API invocation calls
recording a malware at runtime, and generate tags to describe its malicious
behavior. To the best of our knowledge, this is the first research effort which
incorporate a malware’s intentions in malware analysis and in security domain.
It is important to note that we design three embedding modules for transforming
Windows API’s parameter values, registry, a file name and URL, into low-
dimension vectors to preserve the semantics. Also, we apply the attention
mechanism [10] to capture the relationship between a tag and certain API
invocation calls when predicting tags. This will be helpful for security analysts
to understand malicious intentions with easy-to-understand description. Results
demonstrated that seq2seq model could mostly find possible malicious actions.

Keywords: Malware analysis - Dynamic analysis * seq2seq neural network

1 Introduction

A malware, such as virus, Internet worm, trojan horse, and botnet, has been a main
challenge in computer security, because it may disrupt infected network service,
destroy software or data, steal sensitive information, or take control of the host. Thus,
malware detection and malware classification have been widely investigated [1-5, 9].

Anti-virus products have primarily concerned with malware individual signatures to
detect a malware. However, more recently, with the development of obfuscation
techniques and the prevailing access to open source tools, it has been easy to create
variants of a malware so that it has been greatly increase the number of malwares.
Thus, rather than detecting malware individual signatures, we shifted our attention to
analyze malware behavior. If malicious characteristics can be caught, they can be the
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basis of malware detection. This approach will increase the effectiveness of malware
detection and decrease the operating cost of it.

As far as we know, there is no benchmark for malicious characteristics, because it is
a challenge to examine the infected systems, system logs and malware binaries, and
understand any possible intention. Windows APIs, an access to system resources, can
be another resource to reveal malware behavior when a malware is executing. Thus, we
will hook the Windows API functions at the virtualization layer to intercept the targeted
malware at the runtime and record its invoked API calls.

In this paper, we propose a neural sequence-to-sequence (seq2seq) model, which
analyzes a sequence of Windows API invocation calls, and labels subsequences of
Windows API invocation calls with tags. These tags can be used to explain malicious
intentions of a malware. This study will lead to a better understanding of malware
characteristics in malware analysis. This paper makes the following contributions:

e We apply a neural network model, which predicting one or more tags, to describe
malicious intentions of a malware.

e We propose approaches for transforming a Windows API invocation call into a
numeric vector (embedding).

2 System Design

In this paper, our goal is to employ neural network technology to construct an auto-
matic malware tagging system by analyzing a large set of malware samples. When
given a malware sample, the system can output a list of tags which can truly capture the
essence of the series of activities performed by the malicious program.

Figure 1 depicts the overall architecture of the model. The model consists of an
embedding layer and an attention-based seq2seq model. Because the execution traces
generated from the dynamic malware behavior profiling system are text files, we need
to transform the plaintext representations of the API invocation calls into vectorized
representations. Thus, an embedding layer, consisting of API function name embed-
ding, parameter value embedding and return value embedding, takes a variable-length
execution trace x = {xy, ..., X,,} as the input and outputs a sequence of embedding
vectors X' = {x/l, .. .)Hm}. Some parameter types may have numerous categorical values,
such as Registry. It is compute-inefficient to model them all in one-hot encoding
format. Thus, Three embedding modules — registry value embedding, library name
embedding, and URL embedding — are proposed, and will be explained.

A sequence-to-sequence (a.k.a. encoder-decoder) model is a neural network
architecture which consists of an encoder and a decoder. Long Short-Term Memory
(LSTM) [7] is used for sequence processing from a sequential input. A bi-directional
encoder BiLSTM,,coq0- Processes a sequence of variable-length embedding vector X' =
{x|,...x,,} from forward and backward simultaneously, and outputs a series of vector
representation h = {hy, ..., h,,}. A decoder LSTM j,..q., 1s conditioned on the output
h from the encoder to generate a hidden state d;. One key component of the model is to
connect subsequences of API invocation calls to an individual tag. For example, a code
subsequence directly reflects the operation of self-propagation, i.e., tag “worm.” Hence,
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we use an attention mechanism to establish such relationships. We would like to pay
special attention to the relevant subsequence as we tag. The decoder at each time step
focuses on a different part of the input trace to gather the semantics information in order
to generate proper tag. This attention weights are computed by the current hidden state
d; from the decoder and all hidden state /; from the encoder. With the attention weights,
we can obtain a weighted summarization a; of the hidden vectors from the encoder.
A new representation cAi] is the concatenation a; and d; for calculate the probability

distribution over tags. Finally, a linear layer projects the new presentation 31- into a
prediction layer, and a softmax layer computes the tag distribution. The predicated tag
y; is the target class with the highest probability. More details can be found in [10].
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Fig. 1. When given a profile which contains x;...x,,, the proposal system transforms a profile
x = {x;...x,,} into embedding vector x/,...x,, and predicts a list of tags y = {y;...y,} by
capturing the relations between each tag y; and input sequence x = {x;...x,,}.

2.1 The Embedding Layer

The goal of the embedding layer is to produce a fixed-size vector as the corresponding
embedding x” when given a Windows API invocation call x. An API invocation call x;
consists of an API function name w;, one or more parameter values v;, none or one
return value ret;. Each element, x;, is transformed as an embedding xg as a concatenation
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of a function name embedding w}, parameter embeddings v and a return embedding
ret;. Each element learns its identical weighted embedding matrix E.

Xi = concate (Ewwl-7 concate‘kpr‘(Ekvik), Emreti) (1)

where E,, € Ro*M E, € R E,,, € Ré=*I"!l are function name, parameter, and
return embedding matrices; e,, e, and e,., are embedding sizes respectively.

We focus on three resources and propose respective approaches to transform a
parameter value into a low-dimension vector while preserving the semantics. The rest
of input values, including API function names, the other parameter values, and the
return value are initialized by drawing samples from a uniform distribution within
Xavier initializer [6] and learn their own embedding matrices as well.

Registry Value Embedding. In Windows system, registry contains important con-
figuration information for the operating system, services, applications and user settings.
Therefore, registry-related operations are important in malicious behavior analysis and
the parameter values are especially critical. The Windows registry is a hierarchical
database which includes keys, subkeys and values. The structure of registry keys is
similar to that of folders in the file system and they are referenced with a syntax similar
to Window’s path, using backslashes to indicate levels of hierarchy. Thus, we construct
a registry value embedding module to tokenize keys with a backslash, ‘\’, and then use
a LSTM unit referred to as the LSTM ., to transform a key denoted by key = {key,, ...,
key,} into hidden vectors /i,y;... higey,. All hidden vectors are then summed to a registry
representation v,.,. For example, key “HKCU\software\microsoffwindows\cur-
rentversion\internet_settings” contains six tokens - “HKCR”, “software”, “microsoft”,
“windows”, “currentversion” and “internet_settings.” Each token is an input to the
LSTM unit. The output hidden vectors constitute the registry key representation, i.e.,
hHKCU\mftware\micrnxnft\windows\currentversionVnternet_settings= hHKCR + hsoftware + hmicrosnft +
Ryvindows + P currentversion + Pinterner_senings- Therefore, we could preserve the hierarchical
relation between tokens and have a fixed and consistent embedding dimension
regardless of the number of keys.

File Name Embedding. From our analysis of malware operations, malwares often
code file names where the spellings deform some familiar regular names to obfuscate
the intent, e.g., “2dvaai32.dll” vs. “advapi32.dll”. There are also file names which
comprise a file name and a random number, e.g., “tsu08c6ec63.dII” and “tsuOac63fe4.
dil”. Some file names are generated from a hash value, e.g. “518ca2bf37¢13.dIl”. In
other words, any possible combinations for a file name are enormous and unpre-
dictable. Here, we separate the file name into a sequence of character strings {c,, ...,
¢,} and input each character string to a LSTMp, unit one by one and obtain the
corresponding hidden vectors {#.;, ..., h.,}. The last hidden state A, is considered as
file name representation v;;,. For example, a file name “wsock32”, can be split into a
series of characters, {w, s, ..., 2}. Each letter is an input to the LSTMy, unit. They are
transformed into the associated hidden vectors, i.e., hysocr32 = {fw, By, - - -, o} and h,
can be considered as the file name representation for ‘wsock32’. The merit of the
proposed LSTM unit is that it can capture the similarities between purposely
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obfuscated file names or different variations of the same file name while treating each
individually.

URL Embedding. Malware programs often include codes that visit remote malicious
web sites in background and gain control of a computer system without being detected.
However, it is difficult to literally distinguish whether a URL is malicious or not.
Nonetheless, we consider URLs are important part of the information about the pro-
gram’s operations. Specifically, we make use of the URL reports from VirusTotal'
which give the result of the ratio of number of antivirus engines that detected a scanned
URL is malicious or not. This ratio is used as the score for embedding URL. For
instance, a URL, “install.optimum-installer.com”, got six over sixty-six. Since the
score is a real number, the associated embedding E; is an identity matrix of 1 x 1.

3 Evaluation

3.1 Dataset

To capture the essentials of the execution behavior of a malware program, we used an
automated dynamic malware behavior profiling and analysis system based on Virtual
Machine Introspection (VMI) technique [8]. We carefully-selected 28 Windows API
calls, shown in Table 1. A malware sample may create or fork one or more processes.
An execution trace is generated per process. Some distinct malwares with the same
intent have slightly different parameter values, such as the user-profile folders, “user’s
Desktop” and “user’s Documents”, depending on the version of operating systems or
their executable strategy. To reduce this noise, values relevant to file directory and
registry key are symbolized, details in [2]. Also, a trace is reformatted and present a
Windows API call line by line, as a profile illustrated in Fig. 1.

We collected 19,987 malware profiles from11,939 samples, acquired from NCHC’s
OWL? project. Since a few profiles contained too many API calls or too few ones, we
excluded the samples whose number of API calls were smaller than 10, or larger than
300. The final dataset includes 14,677 profiles from 9,666 samples.

In order to compile a set of tags which are descriptive terms to help users quickly
grasp the characteristics of a malware program, we crawled labels from VirusTotal in
April, 2018. The labels were changed to lowercase and tokenized by delimiters, “\ |/|\(|
VIV @]:)/\\_|\+|.” Only the first and second tokens are considered. We manually
build an alias table for the tokens with same meaning. For example, “troj”” and “trj,” are
the abbreviations of “trojan.” Seventy-six tags are compiled, shown in Table 2. We
relabeled the tags for each malware sample. If a sample has any child process file, it is
labeled with the same tags as the main process. We also sorted tags in descending order
by counting occurrences in order to control the variance from the order of tags. We
hope a tag with a highly frequent occurrence could be predicted first.

! https://www.virustotal.com.
2 https://owl.nchc.org.tw.
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We randomly divide the dataset into a training set (80%), a development set (10%),
and a testing set (10%). Distributions of the three sets are then validated by F-test until

none of them have no significant difference. We report results on the testing set.

Table 1. Summary of Windows API function name and parameter types used in this study.

Category | API function name Parameter type

Registry RegCreateKey, RegDeleteKey, hKey, IpSubKey, IpValueName
RegSetValue, RegDeleteValue,

RegOpenCurrentUser™,
RegEnumValue, RegQueryValue

Process CreateProcess, CreateRemoteThread, IpApplicationName, dwCreationFlags,
CreateThread, TerminateProcess, uExitCode
ExitProcess*, OpenProcess™,

WinExec*

Network InternetOpen®, WinHttpConnect, IpszServerName, pswzServerName,
InternetConnect, WinHttpOpen®, nServerPort
WinHttpOpenRequest™,

WinHttpReadData™,
WinHttpSendRequest™,
WinHttpWriteData*,
GetUrlCacheEntryInfo*,
HttpSendRequest™
Library LoadLibrary IpFileName
File CopyFile, CreateFile, DeleteFile IpFileName, IpExistingFileName,
IpNewFileName,
dwCreationDisposition,
dwDesiredAccess, dwShareMode

* .
Only “ExitProcess” has no return value.
*Its associated parameter values are not considered.

Table 2. Seventy-six tags are collected.

Categories

Tags

Type or family

Behavior

Route of
infection
Programming
lang.

Other

Adware, backdoor, bot, browsermodifier, bundler, ddos, game, grayware,
networm, PUP*, ransom, riskware, rootkit, spyware, trojan, virus, worm
Autorun, binder, browserhijacker, clicker, crypt, dialer, dns, downloader,
dropper, fakealert, fakeav, filecryptor, fileinfetor, flooder, fraudtool,
hacktool, infostealer, installer, joke, keylog, lockscreen, memscan, monitor,
packed, prochollow, procinject, virtool, webfilter

Air, email, im, p2p, patch, pdf, proxy, sms, uds

Autoit, bat, html, js, php, vb

Android, apt, avt, constructor, exploit, FAT*, fca, hllp, iframe, irc, keygen,
MBR’, MSIL*, password, PE*, rat

“These tags are changed to uppercase in order to be understood easily.
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3.2 Experimental Settings

We set the LSTM hidden unit size to 256 and the number of layers of LSTMs to 2 in
both the encoder and the decoder. Optimization is performed using Adam optimizer,
with an initial learning rate of 0.0002 for the encoder, and 2.5 for the decoder. Training
runs for 600 epochs. We start halving the learning rate at epoch 300, and decay it per
100 epoch. The mini-batch size is set at 16. Dropout with probability is 0.1.

Two baselines and three input variations are examined to answer two questions: (1) is
the seq2seq model suitable for our task? (2) Can the return embedding or the parameter
embedding help models to predict tags? We reproduced Convolutional Neural Network
(CNN) [11] and Multi-label Multi-class Classification (MLC) as baselines. Both models
use the proposed embedding layer. While the CNN has three convolution layers (256,
192, 64) with an average pooling layer, MLC has the same encoder as the proposed
system. Lastly, both connect to a dense layer and a sigmoid layer.

For each model, three input variations — only API function names, add the asso-
ciated return values, and add the corresponding parameter values — were evaluated. To
ensure that performance is not simply due to an increase in the number of model
parameters, we keep the total size of the embedding layer fixed to 256. The size of the
return embedding and the parameter embedding are set to 2 and 50 respectively, and
the size of the function name embedding is set to bring the total size to 256.

Recall are preferably used as our metric because it means malicious patterns could
be mostly found, which could help security analysis. Precision is also reported.

3.3 Results

Table 3 presents the results among different models and input settings. The results
showed an obvious effect of models on recall and precision. With respect to recall, the
predictions from the seq2seq models relatively approximated the ground truth. On the
other hand, regarding to precision, the percentage of tags from the MLC models
correctly predicted was highest, but the average number of predictions was much less
than the number of ground truth (7.41). We compared the predicted tags from the MLC
models against that from the seq2seq models. It showed that 84% of tags from the
MLC models and 52% from the seq2seq models were the same.

Table 3. Experiment result between different models.

Model | Input setting Recall | Precision | [Predicted tags|
CNN | API name 42.72% | 69.32% | 4.47
API name + return 40.35% | 72.27% | 4.06
API name + parameter + return | 40.82% | 69.63% |4.30
MLC | API name 45.50% | 72.39% | 4.46
API name + return 44.66% | 74.10% |4.34
API name + parameter + return | 46.40% | 72.10% |4.63
seq2seq | API name 57.10% |53.02% |7.92
API name + return 56.25% |52.39% | 7.86
API name + parameter + return | 57.18% | 53.05% | 7.88
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For each model, three input variants had slightly different and inconsistent results
except for the seq2seq models. For seq2seq, considering all of input settings, including
API function names, parameter values, and return values, had minor better performance
than only considering API function names. It was surprised the performance was worse
when considering API function names and return values. It implies we could analyze
malware without knowing it was successful or not. We anticipate the tagging is related
to attack intention, rather than the successfulness of the API call invocation.

4 Conclusion

In this paper, we present a novel neural seq2seq model to analyze Windows API
invocation calls and predict tags to label a malware’s intentions. Results showed that
the seq2seq model, with all of input values, API function names, the associated return
values, and the corresponding parameters, could find mostly possible malicious char-
acteristics with respect to the number of prediction and the high ratio of correctly
predicted tags to ground truth. This can help security experts to understand any
potential malicious intentions with easy-to-understand description.
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